Mathematics forms an extremely important part of your programme of studies. It is an important discipline in its own right and all students need to develop a significant competence in the subject. Physics has long played an important part in spurring the development of many important areas of Mathematics  Newton's development of the differential and integral calculus was motivated by the need to describe motion in the world around him. In recent years, the study of symmetry has blossomed into the major area of pure mathematics known as Group Theory, and many of the mathematical ideas developed in Group Theory are now part of the normal language of both crystallographers and particle physicists. Mathematics is the natural language in which Physics is expressed and, as in the study of any language, you need to become fluent both actively, so that you can set up and do calculations on your own, and passively, so that you can follow the mathematical arguments set out by other writers.
Some of you will choose to study Mathematics more deeply through study of some of the more theoretical and mathematical modules offered either by this School or by the School of Mathematics, others of you will rely on the core material which all physicists must have mastered and which is covered in the core modules in both years 1 and 2. All the Mathematics which you learn in the first two years will be used somewhere  although in some cases you may need to wait a little while to see the relevance to physics of what you are learning. Where possible in this module, examples will always be given to illustrate where and why the mathematics you are studying is relevant to physics.
To learn mathematics effectively it is not sufficient just to attend lectures and get a good set of notes, you need to practice the material you are studying in a fairly intensive way by doing lots of problems and by reading about both the mathematics you are studying and about its applications to physics. We will provide you with fortnightly sets of problems which you should attempt and specialist help will be provided for you in your Mathematics Examples Classes, which are sufficiently small in size that you should be able to get individual help from time to time if you get stuck and need help on a particular topic.
Attendance at these Examples Classes is compulsory and part of the end of year module mark is made up of a component for attendance at these classes. The non assessed Examples Sheets and the Examples Classes should help you get the practice and advice you need to cope with the fortnightly assessed Mathematics problems, the marks from which are used towards the assessment of the module. We are also supplementing the Examples Sheets by a series of computer based practice problems on a number of basic mathematical topics and delivered via the software called STACK with practice questions developed within the School of Physics and Astronomy to align directly with this module. Using STACK you can test yourself, practice your mathematical skills and access the worked answers.
The exercises delivered via STACK are not assessed, but the School will check from time to time to see that you have logged into the system and practised your skills. Students on the Theoretical Physics Programme must get 70% or high in Mathematics for Physicists 1 in order to stay on the programme. A maths mark of lower than 70% will result in you being asked to transfer to a straight Physics programme. High marks in Mathematics for Physicists 2 and other
theoretical modules may enable you to rejoin the Theoretical Physics programme.
