Programme And Module Handbook
Course Details in 2025/26 Session

If you find any data displayed on this website that should be amended, please contact the Curriculum Management Team.

Module Title LH Quantum Mechanics
SchoolPhysics and Astronomy
Department Physics & Astronomy
Module Code 03 35258
Module Lead Prof Martin Freer
Level Honours Level
Credits 10
Semester Semester 1
Pre-requisites LI Differential Equations - (06 25670) LI Multivariable & Vector Analysis - (06 25667)
Restrictions This module can be taken by any student with the appropriate pre-requisite.
Contact Hours Lecture-24 hours
Guided independent study-76 hours
Total: 100 hours
Description Quantum Mechanics describes the behaviour of matter on sub-microscopic scales, and together with Relativity, is one of the two foundations of "modern" physics. Quantum systems are often described as having both "wave-like" and "particle-like" aspects to their behaviour, and are famous for producing results which defy "common sense" intuition based on observations at everyday scales. We will discuss the Schrodinger Equation and some of its applications as well as the concept of a wavefunction. We will illustrate some of the "non-intuitive" behaviour of quantum systems, show how it arises, and how in the limit of large energies, it tends towards classical behaviour. We will discuss "operators", the Uncertainty Principle and will introduce the quantum treatment of angular momentum as well as electron spin. We will consider how to write a wavefunction describing a pair of electrons, and show how the existence of complex chemistry, and thus of life, depends on the answer. And we'll also discuss what Schrodinger really meant with that business about the cat...
Learning Outcomes By the end of the module students should be able to:
  • Perform approximate calculations using the de Broglie relation and the Heisenburg Uncertainty Principle
  • Normalise a wavefunction
  • Use wavefunctions to calculate expectation values and the probabilities of different outcomes of measurements
  • Show how measurement changes the wavefunction
  • Be familiar with the use of Hermitian operators to represent physical quantities in quantum mechanics and the properties of their eigenvalues and eigenfunctions
  • Explain the physical significance of each element of an eigenvalue equation
  • Be familiar with the time-dependent and time-independent Schrodinger equations
  • Solve the time-independent Schrodinger equation for simple 1-D and 2-D potential problems
  • Describe the main features of the solutions for a range of problems
  • Evaluate the commutator of two operators and explain its physical significance
  • Be aware of how the Pauli exclusion principle arises and be able to apply it to multi-electron systems
  • Describe the properties of angular momentum in quantum mechanics
  • Relate the quantum number of atomic electrons to physical variables and know how their different values are related
  • Explain why the concept of electron spin is required to explain experimental observations
Assessment Methods & Exceptions Class Test (20%); 1.5 hours Examination (80%)
Reading List