Programme And Module Handbook
Course Details in 2021/22 Session

If you find any data displayed on this website that should be amended, please contact the Curriculum Management Team.

Module Title LH Mechanical Design B
SchoolSchool of Engineering
Department Mechanical Engineering
Module Code 04 30346
Module Lead TBC
Level Honours Level
Credits 20
Semester Semester 1
Pre-requisites LC Integrated Design Project 1 - (04 30332) LI Mechanical Design A - (04 30334) LI Integrated Design Project 2 - (04 30338)
Restrictions None
Contact Hours Lecture-10 hours
Tutorial-20 hours
Project supervision-20 hours
Guided independent study-150 hours
Total: 200 hours
Description The aim of the module is to enhance students’ knowledge and understanding of the mathematics and scientific assembly, systems integration, principles related to mechanics, materials, manufacturing and design processes, and to develop their ability to apply this knowledge to real- life industrial designs.


Use of Solidworks

Product Design Specification, Engineering drawings to BS8888

Theory of flexible machine elements, nomenclature, kinematics and kinetics, geometric relationships. Types of flexible machine elements.
Power translation screws, Square, V and buttress threads, force and stress analysis, and friction analysis
Cams – Types of cam, nomenclature, kinematics and kinetics, geometric relationships, cam/follower relationships.

Concepts of axial, radial, circumferential location, bearing (rolling & journal) elastohydrodynamic lubrication, static and dynamic seals. Selection of component bought out from specialist suppliers, design and validation of components to be manufactured in-house, selection of materials, manufacturing methods or systems concepts that are related to more than component. Use of appropriate software in the design process.
Concepts and principles of design for assembly of major sub-systems, design for systems integration including mechanical systems, actuators, sensors, etc.
Concepts and principles of design for assembly (DFA) and design for automated assembly (DFAA), design guidelines, Lucas DFA method including design efficiency analysis, feeding and fitting ratios. Hitachi DFA method including the assembly ability evaluation score ratio (E) and assembly cost ratio (K), and Boothroyd-Dewhurst method including assembly time and cost, and minimum number of parts. Lucas DFA Method on Manufacturing Cost Analysis.

Learning Outcomes By the end of the module students should be able to:
  • Understand and apply appropriate codes of practice and international standards i.e. BS 8888
  • Demonstrate knowledge and understanding of the mathematics and scientific principles related to the analysis of machine elements, components, and systems
  • Design and realize a physical system or component to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
  • Manage the engineering design process, identify, formulate, and solve engineering problems and evaluate outcomes.
  • Demonstrate an ability to communicate effectively and work well on team-based engineering projects
  • Identify and manage cost drivers applied to the design and selection of components and systems constrained by a brief.
  • Work with technical uncertainty to develop technical solutions
  • Demonstrate knowledge and understanding of the mathematics and scientific principles related to mechanics and manufacturing processes, and to develop the principles involved in real designs in industry.
  • Demonstrate knowledge and understanding of the mathematics and scientific principles related to Design for Assembly.
  • Demonstrate an awareness of quality related issues.
Assessment 30346-01 : Coursework : Coursework (100%)
Assessment Methods & Exceptions Assessments: 100% Continuous assessment, comprising:
(50%) coursework at midpoint of module
(50%) coursework at the end of semester 1
Other Duplicate of Birmingham-based module 22964
Reading List