When mathematical modelling is used to describe physical, biological, chemical or other phenomena, one of the most common results is either a differential equation or a system of differential equations, which, together with appropriate boundary and/or initial conditions, describe the situation. These differential equations can be either ordinary (ODEs) or partial (PDEs) and finding and interpreting their solution lies at the heart of applied mathematics. This module develops the theory of differential equations with a particular focus on techniques of solving both linear and nonlinear ODEs. Fourier series, which arise in the representation of periodic functions, and special functions, which arise in the solution of PDEs such as Laplace’s equation that models the flow of potential, are also introduced. A number of the classical equations of mathematical physics are solved.

Learning Outcomes

By the end of the module students should be able to:

use phase-plane methods to analyse second order nonlinear ordinary differential equations;

formulate and analyse the equations of motion for particles under the action of applied forces;

set up boundary value problems for ordinary differential equations using a variety of techniques;

solve various linear and nonlinear ODEs using a variety of techniques;

calculate the Fourier series of a function and recognise when the series converges to the function;

Students taking the module at Level H will explore the subject beyond the taught syllabus.

Assessment

27143-01 : Raw Module Mark : Coursework (100%)

Assessment Methods & Exceptions

2 hour Written Unseen Summer Examination (80%); In-course Assessment (20%). Assessed as a single 20-credit module rather than a combined paper.