Programme And Module Handbook
 
Course Details in


If you find any data displayed on this website that should be amended, please contact the Curriculum Management Team.

Module Title LH Numerical Methods II
SchoolMathematics
Department Mathematics
Module Code 06 27710
Module Lead Dr Chris Good
Level Honours Level
Credits 10
Semester Semester 1
Pre-requisites LI Numerical Methods & Programming - (06 25669) LI Differential Equations - (06 25670)
Co-requisites
Restrictions Students are prohibited from taking the M level version of this module
Contact Hours
Exclusions
Description This module builds upon the core numerical techniques students learned in Year 2. It further develops theoretical foundations of practical algorithms for approximating functions and data (Lagrange and Hermite interpolation, adaptive approximation), for solving systems of nonlinear equations (Newton's method and its variants, fixed-point methods), for efficient evaluation of integrals (Romberg, Gaussian, and adaptive quadratures), and for numerical solution of ordinary differential equations (Taylor series method, Runge-Kutta methods, multistep methods). Theoretical and practical aspects of numerical algorithms will be illustrated with MATLAB examples, but no programming will be required.
Learning Outcomes By the end of the module students should be able to:
  • Construct Lagrange and Hermite interpolants for given functions or data.
  • Implement a range of iterative techniques for solving systems of nonlinear equations.
  • Make an informed choice of numerical methods for evaluation of integrals, implement those methods, and assess their accuracy.
  • Solve ordinary differential equations numerically using a range of methods.
Assessment 27710-01 : Raw Module Mark : Coursework (0%)
27710-02 : Final Module Mark : Coursework (100%)
Assessment Methods & Exceptions 90% on one 1.5-hour examination; 10% from coursework and/or class tests.
Other
Reading List