Programme And Module Handbook
 
Course Details in 2021/22 Session


If you find any data displayed on this website that should be amended, please contact the Curriculum Management Team.

Module Title LI Mathematical Methods for Statistics and Econometrics
SchoolBirmingham Business School
Department Birmingham Business School
Module Code 07 33191
Module Lead TBC
Level Intermediate Level
Credits 20
Semester Semester 2
Pre-requisites LC Mathematics for Economics - (07 31832)
Co-requisites
Restrictions None
Contact Hours Lecture-40 hours
Seminar-6 hours
Guided independent study-154 hours
Total: 200 hours
Exclusions
Description This module introduces students to the theoretical underpinnings of statistical methodology and concentrates on inferential procedures within the framework of parametric models. The module is organised in three parts: The first part includes core topics in the theory of probability such as counting methods, sample space and events, axioms of probability, conditional probability, random variables, discrete and continuous probability distributions, multivariate probability distributions, the central limit theorem, among others. The second part includes core topics in estimation and inference, such as properties of point estimators, methods of finding estimators, confidence intervals and hypothesis testing, among others. The third part examines how the previous theory is applied in the linear regression model (which is the workhorse of econometrics), such as the simple linear regression model and derivation of the ordinary least squares (OLS) estimator, multiple linear regression and the matrix algebra form of least squares, properties of the OLS estimator and hypothesis testing, among others. This module is targeted at students who are interested in the theory side of statistics and econometrics.
Learning Outcomes By the end of the module students should be able to:
  • review the theoretical foundations of mathematical statistics;
  • apply statistical techniques to derive estimators, construct confidence intervals and test hypotheses;
  • relate the statistical theory to the linear regression model;
  • demonstrate the skills to prove theorems.
Assessment
Assessment Methods & Exceptions Assessment:
1-hour test (25%);
3-hour written unseen examination (75%)

Reassessment: 3-hour written unseen examination (100%)
Other
Reading List